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1. Introduction 

Providing accurate and timely spatial information on 

rainfall in tropical urban catchments remains a major 

challenge due to the high intensity, short duration, and spatial 

variability of convective rainfall. Traditional methods of 

rainfall measurement, including rain gauge networks and 

weather radars, face significant limitations in urban 

environments [1]. Rain gauges, although widely used, suffer 

from spatial gaps due to insufficient network density, while 

weather radars require extensive calibration and bias 

correction techniques, making them highly dependent on 

supplementary ground-based observations [2,3]. The 

limitations of these conventional approaches highlight the 

need for alternative, cost-effective, and scalable solutions for 

rainfall monitoring. 

 

To address these limitations, this study proposes a novel 

approach using acoustic sensing for rainfall intensity 

estimation. Given the widespread availability of smartphones 

and internet connectivity, rainfall intensity can be estimated 

using audio recordings of rainfall impact on various urban 

surfaces. The concept of rainfall noise analysis has been 

successfully applied in marine environments, where tools like 

the Passive Aquatic Listener (PAL) have been used for 

raindrop size estimation and rainfall intensity inversion 

modeling [4]. Recent studies have explored rainfall sound 

classification in forest environments [5,6] and urban settings 

[7,8,9,10], demonstrating the feasibility of acoustic sensing 

for precipitation monitoring. 

 

There are limited studies in the literature address which 

data-driven modelling technique is the most suitable for 

developing an acoustic rainfall-sensing model. However, the 

literature suggests a large pool of AI and ML models that have 

been successfully used in other applications and could be 

utilized for developing acoustic rainfall sensing models. These 

models include artificial neural networks (ANN), neuro-fuzzy 

systems (NFS), support vector machine (SVM), decision trees, 

boosted and bagged trees (e.g., XGBoost and random forest), 

long short-term memory (LSTM), and convolutional neural 

networks (CNN) [11,12,13]. Therefore, there is a need for a 

holistic approach to investigate the modeling capabilities of a 

diverse set of models. This research aims to establish a robust 

correlation between acoustic rainfall-generated noise and 
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actual rainfall intensity, leveraging machine learning 

techniques to enhance urban rainfall monitoring capabilities. 

The findings of this study will contribute to the development 

of a scalable, low-cost, and real-time alternative to 

conventional rainfall monitoring techniques. 

 

2. Methodology  

 

This study was conducted at Monash University 

Malaysia and its surrounding urban areas, where five distinct 

locations (A–E) were selected for acoustic rainfall data 

collection (as shown in Figure 1). These locations were chosen 

based on their acoustic and physical diversity, representing 

common urban surfaces such as concrete, interlock tiles, steel, 

and glass. The primary criterion for site selection was to 

provide a broad loudness range, with Location A representing 

the loudest and Location B the quietest environment, while the 

remaining locations ensured coverage within these loudness 

boundaries to enhance model generalization. Additional 

constraints, such as constant electricity supply and minimal 

human interference, were also considered to ensure 

uninterrupted data collection. 

 

The data collection spanned two years (from 1st 

September 2020 to 31st August 2022) to capture monsoon-

season rainfall events in Peninsular Malaysia, covering both 

the Southwest monsoon (May–September) and the Northeast 

monsoon (November–March). Rainfall data were recorded 

using a Watchdog Spectrum 2000 weather station at a 1-

minute resolution with a minimum detection sensitivity of 

0.25 mm/min (15 mm/h). To ensure high-quality acoustic 

recordings and reduce uncertainties associated with 

smartphone-based data collection, professional Zoom H2n 

field recorders were used, saving uncompressed WAV files at 

a 44.1 kHz sampling frequency with 16-bit depth. The 

resulting dataset comprised 18,404 one-minute rainfall-audio 

pairs, with a maximum recorded rainfall intensity of 3 

mm/min (180 mm/h). Unlike traditional event-based rainfall 

modeling, this study adopted a data-driven, non-time-series 

approach, treating each one-minute rainfall-audio pair as an 

independent data point rather than a sequential time step. This 

method enabled the model to learn from individual acoustic-

rainfall interactions, improving its ability to generalize across 

different locations. The dataset was divided into training 

(80%), validation (10%), and testing (10%) subsets, ensuring 

statistical consistency across partitions. Training and 

validation datasets were used for model calibration, feature 

selection, and hyperparameter tuning, while the testing dataset 

remained unseen during training to provide an unbiased 

assessment of model performance. Additionally, the mixed 

dataset from five locations allowed the models to capture a 

wider range of acoustic variability, enhancing their ability to 

generalize to new urban environments. 

 

 
Fig. 1. Monash University Malaysia campus and the selected 

points for data collection 

2.1 Artificial Neural Network (ANN) Model 

 

The Artificial Neural Network (ANN) is a widely used 

machine learning model that employs interconnected 

processing units, or neurons, in a layered structure that mimics 

the human brain [14]. Each neuron carries weights and biases 

that are adjusted during the training process to minimize errors 

in predicting rainfall intensity [15]. In an ANN model, input 

neurons are connected to hidden layer neurons, which, in turn, 

are connected to output neurons. For a one-hidden-layer ANN, 

the linear combination of input variables is expressed as 

follows: 

aⱼ = ∑(ωⱼᵢ(1) * xᵢ) + ωⱼ₀(1)                (1) 
 

where, ωⱼᵢ(1) are the weights, ωⱼ₀(1) are the biases, and aⱼ 

are the activations. These activations are transformed using 

nonlinear activation functions such as the sigmoid, hyperbolic 

tangent, or rectified linear unit (ReLU), where ReLU is the 

most commonly used due to its efficient gradient propagation 

(Bishop, 2006). The output neurons follow another linear 

transformation: 

aₖ = ∑(ωₖᵢ(2) * zᵢ) + ωₖ₀(2)  (2) 

 

where 𝑘 = 1, … , k and K represents the number of 

outputs. In regression problems, the activation function for the 

output layer is an identity function, so that 𝑦𝑘 = 𝑎k. 

 

Training the ANN involves finding the optimal weight 

vector to minimize the error between predicted and observed 

rainfall values. The loss function for regression problems is 

defined as: 

E(w) = (1/2) * ∑ ||y(xₙ, w) - tₙ||²  (3) 

where 𝑥n represents the input vector, 𝑡n is the observed 

rainfall value, and 𝑦(𝑥𝑛, 𝑤) is the predicted rainfall intensity. 

The optimization algorithm adjusts weights iteratively to 

minimize the error. Gradient descent optimization updates the 

weights by taking steps in the direction of the negative 

gradient of the loss function. Stochastic gradient descent 

(SGD) is an improved variant that updates weights based on a 

single data point at a time, ensuring efficient convergence. The 

backpropagation algorithm efficiently computes the gradients 

needed for weight updates. The error signal is propagated 

backward through the network using the equation: 

δⱼ = (1 - zⱼ²) * ∑(ωₖⱼ * δₖ)   (4) 

where δj represents the error for each output neuron. 

This iterative weight adjustment ensures optimal 

model learning. 
 

2.2 Extreme Gradient Boosting (XGBoost) Model 

 

XGBoost is a decision tree-based ensemble learning 

algorithm that employs a gradient-boosting framework [16]. It 

enhances traditional boosting techniques using parallel 

computation, allowing for efficient model training. The 

XGBoost model is mathematically expressed as: 

ŷᵢ = 𝜑(xᵢ) = ∑ fₖ(xᵢ), fₖ ∈ F   (5) 

Where 𝑦̂𝑖 represents the predicted value, 𝑓𝑘 represents the 𝑘-

th tree, 𝑓𝑘 (𝑥𝑖 ) is the score of the 𝑖-th sample in the 𝑘-th tree, 

K is the total number of samples, 𝑥𝑖 is the ith input data, and 

𝐹 is all possible trees. The objective function consists of a 

loss function and a regularization term, formulated as follow: 

L(𝜑) = ∑ l(yᵢ, ŷᵢ) + ∑ Ω(fₖ)  (6) 
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Where 

𝛺(𝑓) = 𝛾𝑇 + 1 2 𝜆∑𝑤𝑗 2  (7) 

Where 𝑦𝑖 is the observed value, 𝑦̂𝑖 is the predicted value, l is 

a loss function, Ω is the regularisation term to penalise the 

model complexity and avoid overfitting, λ is the complexity 

of each leaf, 𝑇 total number of leaves in the decision tree, γ is 

a comprise parameter used to scaling the penalty, and 𝑤 is the 

score on the 𝑗-th leaf. 

 

Bayesian optimization was used to fine-tune hyperparameters 

for both models. The MATLAB bayesopt function was used 

for ANN, while the Python skopt library was employed for 

XGBoost. The objective function aimed to minimize RMSE 

over 100 iterations, using the expected-improvement-plus 

acquisition function to avoid local minima. 

 

 

2.3   Model Performance Evaluation Metrics 

Model performance was evaluated using three key 

metrics: the coefficient of determination (R²), which measures 

prediction accuracy, with values closer to 1 indicating better 

performance; the root mean square error (RMSE), which 

quantifies overall prediction error while giving more weight to 

large deviations; and the mean absolute error (MAE), which 

measures the absolute difference between observed and 

predicted values, providing an unbiased assessment of error 

magnitude. 

 

3.  Result and discussion  
To identify the most relevant acoustic features for rainfall 

intensity estimation, a Cross-Correlation Analysis (CCA) was 

performed on 44 extracted features from the time, frequency, 

and cepstral domains. Since the time-frequency domain 

feature is a two-dimensional representation, it was excluded 

from this analysis. The CCA results showed that the top-

ranked features with absolute CC ≥ 0.5 include Mel Frequency 

Cepstral Coefficient-1 (MFCC1), root mean square of energy 

(RMNG), background noise (BGN), and average signal 

amplitude (ASA). MFCC1, belonging to the cepstral domain, 

exhibited the highest correlation with rainfall intensity (CC = 

+0.6), while the remaining three features were derived from 

the time domain. Features with absolute CC values between 

0.3 and 0.5 included zero crossing rate (ZCR) from the time 

domain, along with spectral bandwidth (S_Bandwidth), 

spectral roll-off (S_Rolloff), spectral flux (S_Flux), spectral 

slope (S_Slope), spectral flatness (S_Flatness), spectral 

decrease (S_Decrease) from the frequency domain, and 

MFCC-2, MFCC-4, and MFCC-8 from the cepstral domain. 

In total, 14 features were shortlisted for further evaluation. 

 

Following feature selection, the ANN and XGBoost 

models were trained using various feature combinations to 

identify the optimal input set. The dataset was divided into 

training, validation, and testing subsets, ensuring statistical 

consistency across data partitions. A systematic evaluation of 

16383 non-repeating feature combinations was conducted, 

testing combinations from single-input models up to all 14-

input models. The performance of these combinations was 

assessed using coefficient of determination (R²), root mean 

square error (RMSE), and mean absolute error (MAE). 

 

As expected, MFCC1 emerged as the most effective 

single-input feature, given its highest correlation with rainfall 

intensity. Additional analysis revealed that loudness-related 

features (e.g., MFCC1, ASA, RMNG, and BGN) consistently 

contributed to model performance. However, performance 

gains diminished when multiple loudness features were 

combined, indicating potential feature redundancy. Notably, 

significant performance gains were observed when loudness 

features were combined with frequency or cepstral domain 

features (e.g., S_Decrease, S_Rolloff, S_Bandwidth, or 

higher-degree MFCCs). This suggests that complementary 

spectral and cepstral features enhance the ability of loudness 

features to differentiate rainfall intensities across varying 

urban surfaces. 

Ultimately, the best feature combination was determined 

based on validation dataset performance, where adding 

additional features no longer yielded meaningful 

improvements. The optimal input set for ANN models 

consisted of six features, while the XGBoost model performed 

best with four features (Table 1). These findings highlight the 

importance of integrating at least one loudness feature (e.g., 

MFCC1 or RMNG) with spectral and cepstral features to 

maximize model efficiency in rainfall estimation tasks. 

 

Table 1. Best feature combinations performance for ANN and 

XGBoost models 

 

 
 

 

To optimize model performance, a Bayesian search 

approach was applied to fine-tune hyperparameters for the six-

feature ANN model and the four-feature XGBoost model. 

Table 2 presents the performance metrics for both models 

during training and validation. The fine-tuned ANN model 

demonstrated consistent performance across training and 

validation datasets, suggesting robust generalization with no 

overfitting. Conversely, the XGBoost model exhibited slight 

overfitting, as indicated by discrepancies between training and 

validation performance. Several attempts were made to reduce 

overfitting in the XGBoost model by adjusting regularization 

parameters during the Bayesian search process. However, 

these adjustments resulted in a trade-off between 

generalization and performance, with models achieving lower 

validation accuracy than the baseline fine-tuned model. 

 

Table 2. Performance of fine-tuned ANN and XGBoost 

models 

 
 

 The performance of the Artificial Neural Network (ANN) and 

Extreme Gradient Boosting (XGBoost) models in acoustic 

rainfall sensing for rainfall intensity estimation in Malaysia 

was evaluated based on coefficient of determination (R²), root 

mean square error (RMSE), and mean absolute error (MAE) 

for both training and validation datasets. The ANN model 
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demonstrated consistent performance across the training (R² = 

0.675, RMSE = 0.287 mm/min, MAE = 0.203 mm/min) and 

validation datasets (R² = 0.681, RMSE = 0.286 mm/min, MAE 

= 0.203 mm/min). The minimal difference between training 

and validation results suggests that ANN generalizes well 

without significant overfitting, making it a robust and reliable 

approach for acoustic rainfall sensing. However, the moderate 

R² values indicate that ANN captures some variability in 

rainfall intensity but may require further tuning or additional 

feature extraction to enhance predictive accuracy. 

 

The XGBoost model exhibited higher accuracy during the 

training phase (R² = 0.779, RMSE = 0.238 mm/min, MAE = 

0.174 mm/min) compared to ANN, indicating its capability to 

fit complex relationships within the data. However, its 

validation performance declined significantly (R² = 0.630, 

RMSE = 0.304 mm/min, MAE = 0.216 mm/min), suggesting 

a degree of overfitting, where the model performs well on the 

training dataset but struggles to generalize to unseen data. The 

higher RMSE and MAE in the validation phase indicate that 

XGBoost has larger prediction errors than ANN when applied 

to independent datasets. 

 

While XGBoost outperformed ANN during training, it 

suffered from overfitting, leading to reduced validation 

accuracy. In contrast, ANN maintained stable performance 

between training and validation datasets, making it the more 

generalizable model for acoustic rainfall estimation. XGBoost 

had lower RMSE and MAE in the training phase, indicating 

better initial fit, but these errors increased in the validation 

phase. Conversely, ANN maintained consistent error rates, 

suggesting more robust predictions across datasets. The results 

suggest that ANN is a more balanced model for rainfall 

intensity estimation, as it minimizes overfitting while 

maintaining steady performance in unseen datasets. While 

XGBoost captures rainfall intensity trends more effectively 

during training, its lower validation accuracy highlights the 

need for further regularization and hyperparameter tuning to 

improve generalization. 

 

4. Conclusion 

The comparison between ANN and XGBoost models 

highlights the trade-off between model complexity and 

generalization in acoustic rainfall sensing for rainfall intensity 

estimation in Malaysia. While XGBoost shows promise in 

capturing intricate relationships within training data, its higher 

validation error suggests the need for additional tuning. On the 

other hand, ANN delivers consistent and reliable performance, 

making it a preferable model for real-world deployment in 

rainfall intensity estimation applications. Future research 

should explore hybrid approaches or additional feature 

engineering techniques to further improve predictive 

accuracy. 
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