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ived 07 March 2025; Abstract: Accurate rainfall estimation in urban environments remains a significant challenge due

to the limitations of traditional rain gauge networks and weather radar calibration issues. This study
explores the potential of acoustic rainfall sensing, leveraging audio data recorded from rainfall
impacting various urban surfaces. The rainfall audio data collection was conducted in Monash
University Malaysia campus over two years, using professional recorders at five different
locations. A data-driven approach was employed using artificial neural networks (ANN) and
extreme gradient boosting (XGBoost) models to develop an acoustic rainfall estimation model.
Results demonstrated that a combination of loudness, frequency, and cepstral domain features
significantly improved prediction accuracy, with the ANN model outperforming XGBoost. The
ANN model demonstrated consistent performance across the training (R2 = 0.675, RMSE = 0.287
mm/min, MAE = 0.203 mm/min) and validation datasets (R2 = 0.681, RMSE = 0.286 mm/min,
MAE = 0.203 mm/min). The findings suggest that acoustic sensing, when integrated with urban loT
frameworks, can serve as a low-cost and scalable alternative for urban rainfall monitoring. Future
research should focus on enhancing feature selection techniques and expanding real-world testing
environments to improve model robustness.
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1. Introduction

Providing accurate and timely spatial information on
rainfall in tropical urban catchments remains a major
challenge due to the high intensity, short duration, and spatial
variability of convective rainfall. Traditional methods of
rainfall measurement, including rain gauge networks and
weather radars, face significant limitations in urban
environments [1]. Rain gauges, although widely used, suffer
from spatial gaps due to insufficient network density, while
weather radars require extensive calibration and bias
correction techniques, making them highly dependent on
supplementary  ground-based observations [2,3]. The
limitations of these conventional approaches highlight the
need for alternative, cost-effective, and scalable solutions for
rainfall monitoring.

To address these limitations, this study proposes a novel
approach using acoustic sensing for rainfall intensity
estimation. Given the widespread availability of smartphones
and internet connectivity, rainfall intensity can be estimated
using audio recordings of rainfall impact on various urban
surfaces. The concept of rainfall noise analysis has been

successfully applied in marine environments, where tools like
the Passive Aquatic Listener (PAL) have been used for
raindrop size estimation and rainfall intensity inversion
modeling [4]. Recent studies have explored rainfall sound
classification in forest environments [5,6] and urban settings
[7,8,9,10], demonstrating the feasibility of acoustic sensing
for precipitation monitoring.

There are limited studies in the literature address which
data-driven modelling technique is the most suitable for
developing an acoustic rainfall-sensing model. However, the
literature suggests a large pool of Al and ML models that have
been successfully used in other applications and could be
utilized for developing acoustic rainfall sensing models. These
models include artificial neural networks (ANN), neuro-fuzzy
systems (NFS), support vector machine (SVM), decision trees,
boosted and bagged trees (e.g., XGBoost and random forest),
long short-term memory (LSTM), and convolutional neural
networks (CNN) [11,12,13]. Therefore, there is a need for a
holistic approach to investigate the modeling capabilities of a
diverse set of models. This research aims to establish a robust
correlation between acoustic rainfall-generated noise and
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actual rainfall intensity, leveraging machine learning
techniques to enhance urban rainfall monitoring capabilities.
The findings of this study will contribute to the development
of a scalable, low-cost, and real-time alternative to
conventional rainfall monitoring techniques.

2. Methodology

This study was conducted at Monash University
Malaysia and its surrounding urban areas, where five distinct
locations (A-E) were selected for acoustic rainfall data
collection (as shown in Figure 1). These locations were chosen
based on their acoustic and physical diversity, representing
common urban surfaces such as concrete, interlock tiles, steel,
and glass. The primary criterion for site selection was to
provide a broad loudness range, with Location A representing
the loudest and Location B the quietest environment, while the
remaining locations ensured coverage within these loudness
boundaries to enhance model generalization. Additional
constraints, such as constant electricity supply and minimal
human interference, were also considered to ensure
uninterrupted data collection.

The data collection spanned two years (from 1st
September 2020 to 31st August 2022) to capture monsoon-
season rainfall events in Peninsular Malaysia, covering both
the Southwest monsoon (May—September) and the Northeast
monsoon (November—March). Rainfall data were recorded
using a Watchdog Spectrum 2000 weather station at a 1-
minute resolution with a minimum detection sensitivity of
0.25 mm/min (15 mm/h). To ensure high-quality acoustic
recordings and reduce uncertainties associated with
smartphone-based data collection, professional Zoom H2n
field recorders were used, saving uncompressed WAV files at
a 44.1 kHz sampling frequency with 16-bit depth. The
resulting dataset comprised 18,404 one-minute rainfall-audio
pairs, with a maximum recorded rainfall intensity of 3
mm/min (180 mm/h). Unlike traditional event-based rainfall
modeling, this study adopted a data-driven, non-time-series
approach, treating each one-minute rainfall-audio pair as an
independent data point rather than a sequential time step. This
method enabled the model to learn from individual acoustic-
rainfall interactions, improving its ability to generalize across
different locations. The dataset was divided into training
(80%), validation (10%), and testing (10%) subsets, ensuring
statistical consistency across partitions. Training and
validation datasets were used for model calibration, feature
selection, and hyperparameter tuning, while the testing dataset
remained unseen during training to provide an unbiased
assessment of model performance. Additionally, the mixed
dataset from five locations allowed the models to capture a
wider range of acoustic variability, enhancing their ability to
generalize to new urban environments.

Fig. 1. Monash University Malaysia campus and the selected
points for data collection
2

2.1 Artificial Neural Network (ANN) Model

The Artificial Neural Network (ANN) is a widely used
machine learning model that employs interconnected
processing units, or neurons, in a layered structure that mimics
the human brain [14]. Each neuron carries weights and biases
that are adjusted during the training process to minimize errors
in predicting rainfall intensity [15]. In an ANN model, input
neurons are connected to hidden layer neurons, which, in turn,
are connected to output neurons. For a one-hidden-layer ANN,
the linear combination of input variables is expressed as
follows:

= (0 * xi) + @p® @

where, m;(1) are the weights, mj(1) are the biases, and a;
are the activations. These activations are transformed using
nonlinear activation functions such as the sigmoid, hyperbolic
tangent, or rectified linear unit (ReLU), where ReLU is the
most commonly used due to its efficient gradient propagation
(Bishop, 2006). The output neurons follow another linear
transformation:

ac = (0ui(2) * zi) + oxo(2) 2

where k =1, ... , k and K represents the number of
outputs. In regression problems, the activation function for the
output layer is an identity function, so that yk = ak.

Training the ANN involves finding the optimal weight
vector to minimize the error between predicted and observed
rainfall values. The loss function for regression problems is
defined as:

E(w) = (1/2) * 2 lly(xn, W) - 6l (3)

where xn represents the input vector, tn is the observed
rainfall value, and y(xn, w) is the predicted rainfall intensity.
The optimization algorithm adjusts weights iteratively to
minimize the error. Gradient descent optimization updates the
weights by taking steps in the direction of the negative
gradient of the loss function. Stochastic gradient descent
(SGD) is an improved variant that updates weights based on a
single data point at a time, ensuring efficient convergence. The
backpropagation algorithm efficiently computes the gradients
needed for weight updates. The error signal is propagated
backward through the network using the equation:

8= (1-2z7) * Y(wy * &) (4)

where 0j represents the error for each output neuron.
This iterative weight adjustment ensures optimal
model learning.

2.2 Extreme Gradient Boosting (XGBoost) Model

XGBoost is a decision tree-based ensemble learning
algorithm that employs a gradient-boosting framework [16]. It
enhances traditional boosting techniques using parallel
computation, allowing for efficient model training. The
XGBoost model is mathematically expressed as:

¥i=o(xi) =2 fuxi), fk €F 5)

Where yi represents the predicted value, fk represents the k-
th tree, fk (xi ) is the score of the i-th sample in the k-th tree,
K is the total number of samples, xi is the ith input data, and
F is all possible trees. The objective function consists of a
loss function and a regularization term, formulated as follow:

Le) =2 I(ys, §1) + X Q(f) (6)
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Where
Qf)=yT+1223wj2 (7

Where yi is the observed value, yi is the predicted value, | is
a loss function, Q is the regularisation term to penalise the
model complexity and avoid overfitting, A is the complexity
of each leaf, T total number of leaves in the decision tree, vy is
a comprise parameter used to scaling the penalty, and w is the
score on the j-th leaf.

Bayesian optimization was used to fine-tune hyperparameters
for both models. The MATLAB bayesopt function was used
for ANN, while the Python skopt library was employed for
XGBoost. The objective function aimed to minimize RMSE
over 100 iterations, using the expected-improvement-plus
acquisition function to avoid local minima.

2.3 Model Performance Evaluation Metrics

Model performance was evaluated using three key
metrics: the coefficient of determination (R2), which measures
prediction accuracy, with values closer to 1 indicating better
performance; the root mean square error (RMSE), which
quantifies overall prediction error while giving more weight to
large deviations; and the mean absolute error (MAE), which
measures the absolute difference between observed and
predicted values, providing an unbiased assessment of error
magnitude.

3. Result and discussion

To identify the most relevant acoustic features for rainfall
intensity estimation, a Cross-Correlation Analysis (CCA) was
performed on 44 extracted features from the time, frequency,
and cepstral domains. Since the time-frequency domain
feature is a two-dimensional representation, it was excluded
from this analysis. The CCA results showed that the top-
ranked features with absolute CC > 0.5 include Mel Frequency
Cepstral Coefficient-1 (MFCCL), root mean square of energy
(RMNG), background noise (BGN), and average signal
amplitude (ASA). MFCC1, belonging to the cepstral domain,
exhibited the highest correlation with rainfall intensity (CC =
+0.6), while the remaining three features were derived from
the time domain. Features with absolute CC values between
0.3 and 0.5 included zero crossing rate (ZCR) from the time
domain, along with spectral bandwidth (S_Bandwidth),
spectral roll-off (S_Rolloff), spectral flux (S_Flux), spectral
slope (S_Slope), spectral flatness (S_Flatness), spectral
decrease (S_Decrease) from the frequency domain, and
MFCC-2, MFCC-4, and MFCC-8 from the cepstral domain.
In total, 14 features were shortlisted for further evaluation.

Following feature selection, the ANN and XGBoost
models were trained using various feature combinations to
identify the optimal input set. The dataset was divided into
training, validation, and testing subsets, ensuring statistical
consistency across data partitions. A systematic evaluation of
16383 non-repeating feature combinations was conducted,
testing combinations from single-input models up to all 14-
input models. The performance of these combinations was
assessed using coefficient of determination (R?), root mean
square error (RMSE), and mean absolute error (MAE).

As expected, MFCC1 emerged as the most effective
single-input feature, given its highest correlation with rainfall
intensity. Additional analysis revealed that loudness-related
features (e.g.,, MFCC1, ASA, RMNG, and BGN) consistently
contributed to model performance. However, performance
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gains diminished when multiple loudness features were
combined, indicating potential feature redundancy. Notably,
significant performance gains were observed when loudness
features were combined with frequency or cepstral domain
features (e.g., S_Decrease, S_Rolloff, S_Bandwidth, or
higher-degree MFCCs). This suggests that complementary
spectral and cepstral features enhance the ability of loudness
features to differentiate rainfall intensities across varying
urban surfaces.

Ultimately, the best feature combination was determined
based on validation dataset performance, where adding
additional  features no longer yielded meaningful
improvements. The optimal input set for ANN models
consisted of six features, while the XGBoost model performed
best with four features (Table 1). These findings highlight the
importance of integrating at least one loudness feature (e.g.,
MFCC1 or RMNG) with spectral and cepstral features to
maximize model efficiency in rainfall estimation tasks.

Table 1. Best feature combinations performance for ANN and
XGBoost models

Model Best Feature | Dataset R? RMSE MAE
Combination (mm.min~") | (mm.min"")
ANN (6-input) [ MECCI Training
ZCR 0.626 0.307 0217
MFCC4 _
MECCS Validation
S Decrease "
S Rolloff 0.625 0.309 0219
XGBoost(4- MFCC1 Training | 0.619 0.312 0.225
2
input) MEEE& Validation
4 b
S_Bandwidth 0.604 0315 0229

To optimize model performance, a Bayesian search
approach was applied to fine-tune hyperparameters for the six-
feature ANN model and the four-feature XGBoost model.
Table 2 presents the performance metrics for both models
during training and validation. The fine-tuned ANN model
demonstrated consistent performance across training and
validation datasets, suggesting robust generalization with no
overfitting. Conversely, the XGBoost model exhibited slight
overfitting, as indicated by discrepancies between training and
validation performance. Several attempts were made to reduce
overfitting in the XGBoost model by adjusting regularization
parameters during the Bayesian search process. However,
these adjustments resulted in a trade-off between
generalization and performance, with models achieving lower
validation accuracy than the baseline fine-tuned model.

Table 2. Performance of fine-tuned ANN and XGBoost
models
Model Dataset R? RMSE MAE

(mm.min"Y) | (mm.min"")

ANN Training 0.675 0.287 0.203
Validation 0.681 0.286 0.203
XGBoost Training 0.779 0.238 0.174
Validation 0.630 0.304 0.216

The performance of the Artificial Neural Network (ANN) and
Extreme Gradient Boosting (XGBoost) models in acoustic
rainfall sensing for rainfall intensity estimation in Malaysia
was evaluated based on coefficient of determination (R?), root
mean square error (RMSE), and mean absolute error (MAE)
for both training and validation datasets. The ANN model
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demonstrated consistent performance across the training (R2 =
0.675, RMSE = 0.287 mm/min, MAE = 0.203 mm/min) and
validation datasets (R2=0.681, RMSE = 0.286 mm/min, MAE
= 0.203 mm/min). The minimal difference between training
and validation results suggests that ANN generalizes well
without significant overfitting, making it a robust and reliable
approach for acoustic rainfall sensing. However, the moderate
R2 values indicate that ANN captures some variability in
rainfall intensity but may require further tuning or additional
feature extraction to enhance predictive accuracy.

The XGBoost model exhibited higher accuracy during the
training phase (R2 = 0.779, RMSE = 0.238 mm/min, MAE =
0.174 mm/min) compared to ANN, indicating its capability to
fit complex relationships within the data. However, its
validation performance declined significantly (R?2 = 0.630,
RMSE = 0.304 mm/min, MAE = 0.216 mm/min), suggesting
a degree of overfitting, where the model performs well on the
training dataset but struggles to generalize to unseen data. The
higher RMSE and MAE in the validation phase indicate that
XGBoost has larger prediction errors than ANN when applied
to independent datasets.

While XGBoost outperformed ANN during training, it
suffered from overfitting, leading to reduced validation
accuracy. In contrast, ANN maintained stable performance
between training and validation datasets, making it the more
generalizable model for acoustic rainfall estimation. XGBoost
had lower RMSE and MAE in the training phase, indicating
better initial fit, but these errors increased in the validation
phase. Conversely, ANN maintained consistent error rates,
suggesting more robust predictions across datasets. The results
suggest that ANN is a more balanced model for rainfall
intensity estimation, as it minimizes overfitting while
maintaining steady performance in unseen datasets. While
XGBoost captures rainfall intensity trends more effectively
during training, its lower validation accuracy highlights the
need for further regularization and hyperparameter tuning to
improve generalization.

4, Conclusion

The comparison between ANN and XGBoost models
highlights the trade-off between model complexity and
generalization in acoustic rainfall sensing for rainfall intensity
estimation in Malaysia. While XGBoost shows promise in
capturing intricate relationships within training data, its higher
validation error suggests the need for additional tuning. On the
other hand, ANN delivers consistent and reliable performance,
making it a preferable model for real-world deployment in
rainfall intensity estimation applications. Future research
should explore hybrid approaches or additional feature
engineering techniques to further improve predictive
accuracy.
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